

Diagnosis and Treatment of Patients with early and advanced Breast Cancer

Early Detection and Diagnosis

FORSCHEN LEHIREN HEILEN

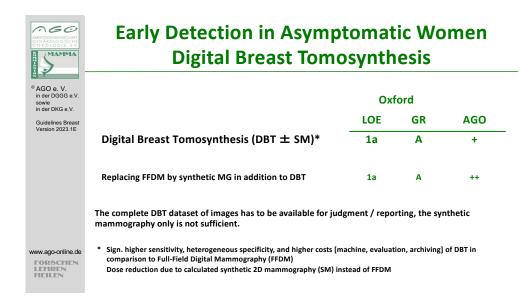
Screened data bases

Pubmed	2018 - 2021
Medline	2018 - 2021
Cochrane	2018 - 2021

<u>Guidelines</u>

S3 Diagnostik, Therapie und Nachsorge des Mammakarzinoms:

- Wöckel A, Festl J, Stüber T et al. Interdisciplinary Screening, Diagnosis, Therapy and Follow-up of Breast Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/045OL, December 2017) - Part 1 with Recommendations for the Screening, Diagnosis and Therapy of Breast Cancer. Geburtshilfe Frauenheilkd. 2018 Oct;78(10):927-948. doi: 10.1055/a-0646-4522. Epub 2018 Oct 19.
- Wöckel A, Festl J, Stüber T et al. Interdisciplinary Screening, Diagnosis, Therapy and Follow-up of Breast Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/045OL, December 2017) - Part 2 with Recommendations for the Therapy of Primary, Recurrent and Advanced Breast Cancer. Geburtshilfe Frauenheilkd. 2018 Nov;78(11):1056-1088. doi: 10.1055/a-0646-4630. Epub 2018 Nov 26.


European Commission Initiative on Breast Cancer (ECIBC) European guidelines on breast cancer screening and diagnosis https://healthcare-quality.jrc.ec.europa.eu/european-breast-cancer-guidelines 2015 ACS Update Breast Cancer Screening for women at average risk IARC Handbook 2016 European Commission 2016 (http://ecibc.jrc.ec.europa.eu/recommendations/list/3;Update 24.11.2016, Abruf 20122016) Screened: Metaanalyses/ Systematic reviews / RCT / Cohort studies

	Early Det	ection with Ma	ammog	raph	Y
© AGO e. V.			Oxf	ord	
in der DGGG e.V. sowie in der DKG e.V.	Age	Interval	LOE	GR	AGO
Guidelines Breast Version 2023.1E	< 40	na	-	-	
	40-44	na	1b	В	-
	45–49	24-36	1a	В	+#
	50-69*	24	1a	Α	++
	70–74	24	1a	Α	+#
	> 75**	24	4	С	+/-#
www.ago-online.de					
FORSCHEN LEHREN HEILEN	 * National Mammography-Screening- ** health status + life expectancy more # clear indication necessary, or indicat 	than 10 years			

- 1. Bleyer A, Welch H. Effect of three decades of screening mammography on breast-cancer incidence. N Engl J Med 2012; 367:1998-2005
- 2. Broeders M, Moss S, Nyström L et al. The impact of mammography screening on breast cancer mortality in Europe: a review of observational studies. J Med Screen 2012; 19(Suppl 1):14-25
- 3. Canadian Task Force on Preventive Health Care. Recommendations on screening for breast cancer in average-risk women aged 40-74 years. CMAJ 2011; 183:1991-2001
- 4. Duffy SW, Dibden A, Michalopoulos D, et al Screen detection of ductal carcinoma in situ and subsequent incidence of invasive interval breast cancers: a retrospective population-based study. Lancet Oncol 2016;17:109-114
- 5. Gotsche PC, Olsen O. Is screening for breast cancer with mammography justifiable? Database Syst Rev 2011 Jan 19(1): CD001877. Review
- 6. Lauby-Secretan B, Scoccianti C, Loomis D, et al. for the International Agency for Research on Cancer Handbook Working Group. N Engl J Med June 4, 2015
- 7. Miglioretti DL, Zhu W, Kerlikowske K, et al. for the Breast Surveillance Consortium. Breast tumor prognostic characteristics and biennial vs annual mammography, age and menopausal status. JAMA Oncol 2015;1(8):1069-1077
- 8. Myers ER, Moorman P, Gierisch JM et al.: Benefits and harms of breast cancer screening: a systematic review. JAMA 2015;314(15)1615-1634

- 9. Nickson C, Mason KE, Kavanagh AM. Breast cancer screening of women aged 70-74 years: results from a national experiment across Australia. Breast Cancer Res Treat 2014;143:367-372
- 10. Puliti D, Duffy S, Miccinesi G et al.: Overdiagnosis in mammography screening for breast cancer in Europe: a literature review. J Med Screen 2012; 19(Suppl 1):42-56
- 11. Tabar L, Vitak B, Chen THH et al.: Swedish Two-County Trial: Impact of mammography screening on breast cancer mortality during 3 decades. Radiology 2011;260:658-663
- 12. Walter LC, Schonberg MA Screening mammography in older women: a review. JAMA 2014;311(13):1336-1347
- 13. Yaffee MJ, Mainprize JG Risk of radiation-induced breast cancer from mammographic screening. Radiology 2011; 258(1):98-105
- 14. ACS 2015: Systematic Review of Cancer Screening Literature for Updating American Cancer Society Breast Cancer Screening Guidelines. Duke Evidence Synthesis Group. http://www.cancer.org/acs/groups/content/documents/document/acspc-046315.pdf. Zugriff am 11.August 2016
- 15. USPSTF 2016: US Preventive Services Task Force Final Recommendation Statement for mammographyScreening12.01.2016.http://www.uspreventiveservicestaskforce.org/Page/Document/RecommendationStatementFin al/breast-cancer-screening Zugriff 04112016
- 16. Nelson HD, et al. (2016a). Effectiveness of Breast Cancer Screening: Systematic Review and Meta-analysis to Update the 2009 U.S. Preventive Services Task Force Recommendation. Ann Intern Med. 2016 Feb 16;164(4):244-55
- 17. Nelson HD, et al. (2016b). Harms of Breast Cancer Screening: Systematic Review to Update the 2009 U.S. Preventive Services Task Force Recommendation. Ann Intern Med. 2016 Feb 16;164(4):256-67.
- 18. Miglioretti DL, Lange J, van den Broek JJ, et al. Radiation-Induced Breast Cancer Incidence and Mortality from Digital Mammography Screening: A Modeling Study Ann Intern Med. 2016 Feb 16; 164(4):205-14.
- 19. European Commission Initiative on Breast Cancer (ECIBC): European guidelines on breast cancer screeningand diagnosis
- 20. (https://healthcare-quality.jrc.ec.europa.eu/sites/default/files/Guidelines/EtDs/ECIBC_GLs_EtD_screening_40-44.pdf)
- 21. Schünemann HJ, Lerda D, Quinn C, Follmann M, Alonso-Coello P, Rossi PG, et al. Breast Cancer Screening and Diagnosis: A Synopsis of the European Breast Guidelines. Annals of Internal Medicine. 2020;172(1):46-56.
- 22. Zielonke N, Kregting LM, Heijnsdijk EAM, Veerus P, Heinavaara S, McKee M, et al. The potential of breast cancer screening in Europe. International journal of cancer Journal international du cancer. 2021;148(2):406-18.
- 18. Maroni R, Massat NJ, Parmar D, Dibden A, Cuzick J, Sasieni PD, et al. A case-control study to evaluate the impact of the breast screening programme on mortality in England. Br J Cancer. 2020.

- 19. Lee CS, Monticciolo DL, Moy L. Screening Guidelines Update for Average-Risk and High-Risk Women. AJR American journal of roentgenology. 2020;214(2):316-23.
- 20. Mao Z, Nystrom L, Jonsson H. Breast cancer screening with mammography in women aged 40-49 years: Impact of length of screening interval on effectiveness of the program. Journal of medical screening. 2020:969141320918283.
- 21. Khil L, Heidrich J, Wellmann I, Kaab-Sanyal V, Weigel S, Heindel W, et al. Incidence of advanced-stage breast cancer in regular participants of a mammography screening program: a prospective register-based study. Bmc Cancer. 2020;20(1):174.
- 22. Duffy SW, Tabar L, Yen AM, et al. Mammography screening reduces rates of advanced and fatal breast cancers: Results in 549,091 women. Cancer. 2020;126(13):2971-9.
- 23. Duffy SW, Vulkan D, Cuckle H, et al. Effect of mammographic screening from age 40 years on breast cancer mortality (UK Age trial): final results of a randomised, controlled trial. The Lancet Oncology. 2020;21(9):1165-72.
- 24. Duffy S, Vulkan D, Cuckle H, et al. Annual mammographic screening to reduce breast cancer mortality in women from age 40 years: long-term follow-up of the UK Age RCT. Health Technol Assess. 2020;24(55):1-24.
- 25. Dibden A, Offman J, Duffy SW, et al. Worldwide Review and Meta-Analysis of Cohort Studies Measuring the Effect of Mammography Screening Programmes on Incidence-Based Breast Cancer Mortality. Cancers (Basel). 2020;12(4).
- 26. de Munck L, Siesling S, Fracheboud J, et al. Impact of mammographic screening and advanced cancer definition on the percentage of advanced-stage cancers in a steady-state breast screening programme in the Netherlands. Br J Cancer. 2020;123(7):1191-7.

- 1. Hodgson et al 2016 Hodgson R, Heywang-Köbrunner SH, Harvey SC, et al. Systematic review of 3D mammography for breast cancer screening. Breast. 2016 Jun;27:52-61. doi: 10.1016/j.breast.2016.01.002. Review.)
- 2. Ciatto S, Houssami N, Bernardi D, et al.: Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. Lancet Oncol 2017; 14 (7): 583-9, 2013
- 3. Houssami N, Bernardi D, Pellegrini M, et al. Breast cancer detection using single-reading of breast tomosynthesis (3D-mammography) compared to double-reading of 2D-mammography: Evidence from a population-based trial.(Storm-2) Cancer Epidemiol. 2017 Apr;47:94-99. doi: 10.1016/j.canep.2017.01.008.
- 4. Aujero MP, Gavenonis SC, Benjamin R, et al. Clinical Performance of Synthesized Two-dimensional Mammography Combined with Tomosynthesis in a Large Screening Population. Radiology. 2017 Apr;283(1):70-76. doi: 10.1148/radiol.2017162674.
- 5. Zackrisson S, Lång K, Rosso A et al. One-view breast tomosynthesis versus two-view mammography in the Malmö Breast Tomosynthesis Screening Trial (MBTST): a prospective, population-based, diagnostic accuracy study. Lancet Oncol. 2018 Nov;19(11):1493-1503. doi: 10.1016/S1470-2045(18)30521-7. Epub 2018 Oct 12.
- Hofvind S, Hovda T, Holen ÅS et al. Digital Breast Tomosynthesis and Synthetic 2D Mammography versus Digital Mammography: Evaluation in a Population-based Screening Program. Radiology. 2018 Jun;287(3):787-794. doi: 10.1148/radiol.2018171361. Epub 2018 Mar 1.
- 7. Albert US, Schreer I; Arbeitsgruppe der Stufe-3-Leitlinie Mammarkarzinom. [S3 guideline breast cancer: update on early detection,

and mammography screening]. Radiologe. 2019 Jan;59(1):13-18. doi: 10.1007/s00117-018-0473-6. Review. German.

- 8. Marinovich ML, Hunter KE, Macaskill P et al. Breast Cancer Screening Using Tomosynthesis or Mammography: A Meta-analysis of Cancer Detection and Recall. J Natl Cancer Inst. 2018 Sep 1;110(9):942-949. doi: 10.1093/jnci/djy121.
- 9. Phi X-A, Tagliafico A, Houssami N et al. Digital breast tomosynthesis for breast cancer screening and diagnosis in women with dense breasts a systematic review and meta-analysis. BMC Cancer201818:380; https://doi.org/10.1186/s12885-018-4263-3
- Weigel S, Gerss J, Hense HW et al.: Digital breast tomosynthesis plus synthesised images versus standard full-field digital mammography in population-based screening (TOSYMA): protocol of a randomised controlled trial. BMJ Open. 2018 May 14;8(5):e020475. doi: 10.1136/bmjopen-2017-020475.
- 11. Caumo F, Montemezzi S, Romanucci G, et al. Repeat Screening Outcomes with Digital Breast Tomosynthesis Plus Synthetic Mammography for Breast Cancer Detection: Results from the Prospective Verona Pilot Study. Radiology. 2021;298(1):49-57.
- 12. Kleinknecht JH, Ciurea AI, Ciortea CA. Pros and cons for breast cancer screening with tomosynthesis a review of the literature. Med Pharm Rep. 2020;93(4):335-41.
- 13. Giampietro RR, Cabral MVG, Lima SAM, et al. Accuracy and Effectiveness of Mammography versus Mammography and Tomosynthesis for Population-Based Breast Cancer Screening: A Systematic Review and Meta-Analysis. Sci Rep. 2020;10(1):7991.
- 14. Bernardi D, Gentilini MA, De Nisi M, et al. Effect of implementing digital breast tomosynthesis (DBT) instead of mammography on population screening outcomes including interval cancer rates: Results of the Trento DBT pilot evaluation. Breast. 2020;50:135-40.
- 15. Alabousi M, Wadera A, Kashif Al-Ghita M, et al. Performance of Digital Breast Tomosynthesis, Synthetic Mammography and Digital Mammography in Breast Cancer Screening: A Systematic Review and Meta-Analysis. Journal of the National Cancer Institute. 2020.
- 16. Mostafa Alabousi, Nanxi Zha, Jean-Paul Salameh et al. Digital breast tomosynthesis for breast cancer detection: a diagnostic test accuracy systematic review and meta-analysis. filiations expand. PMID: 31900699. DOI: 0.1007/s00330-019-06549-2
- 17. Alabousi M, Wadera A, Kashif Al-Ghita M, et al. Performance of Digital Breast Tomosynthesis, Synthetic Mammography, and Digital Mammography in Breast Cancer
- 18. Heywang-Köbrunner SH, Jänsch A, Hacker A, et al. Digital breast tomosynthesis (DBT) plus synthesised two-dimensional mammography (s2D) in breast cancer screening is associated with higher cancer detection and lower recalls compared to digital mammography (DM) alone: results of a systematic review and meta-analysis. Eur Radiol. 2021 Oct 25. doi: 10.1007/s00330-021-08308-8. Online ahead of print.PMID: 34694451

- 19. Zeng B, Yu K, Gao L, et al. Breast cancer screening using synthesized two-dimensional mammography: A systematic review and metaanalysis. Q.Breast. 2021 Oct;59:270-278. doi: 10.1016/j.breast.2021.07.016. Epub 2021 Jul 22.PMID: 34329948 Free PMC article. Review.
- 20. Pattacini, P., A. Nitrosi, P. Giorgi Rossi, S. W. Duffy, V. lotti, V. Ginocchi, S. Ravaioli, R. Vacondio, P. Mancuso, M. Ragazzi, C. Campari and R. E. W. Group (2022). "A Randomized Trial Comparing Breast Cancer Incidence and Interval Cancers after Tomosynthesis Plus Mammography versus Mammography Alone." <u>Radiology</u> **303**(2): 256-266.
- 21. Heindel, W., S. Weigel, J. Gerss, H. W. Hense, A. Sommer, M. Krischke, L. Kerschke and T. S. T. S. Group (2022). "Digital breast tomosynthesis plus synthesised mammography versus digital screening mammography for the detection of invasive breast cancer (TOSYMA): a multicentre, open-label, randomised, controlled, superiority trial." <u>Lancet Oncol</u> 23(5): 601-611.
- 22. Weigel, S., W. Heindel, H. W. Hense, T. Decker, J. Gerss, L. Kerschke and T. S. T. S. Group (2022). "Breast Density and Breast Cancer Screening with Digital Breast Tomosynthesis: A TOSYMA Trial Subanalysis." <u>Radiology</u>.

	Breast cancer mortality reduction							
Metaa	inalyses	RR 95% CI						
V II I	dent UK Panel, 2012 metaanalysis	0.80 (0.73–0.89)						
Cochran	e Review, 2011 fect metaanalysis of 9 RCT-trials	0.81 (0.74–0.87)						
As abov	e, but excluding women <50 years	0.77 (0.69–0.86)						
	n Task Force, 2011 aged 50–69 years	0.79 (0.68–0.90)						
	al, 2012 of all trials and age groups	0.79 (0.73–0.86)						
	al, 2020 of 549,091 Women (30% eligible Swedish screening population)	0.59 (0.51-0.68) mortality 0.75 (0.66-0.84) advanced BC						

- 1. Canadian Task Force on Preventive Health Care. Recommendations on screening for breast cancer in average-risk women aged 40-74 years. CMAJ 2011; 183:1991-2001
- 2. Duffy S, Ming-Fang Yen A, Hsiu-Hsi Chen T, et al. Long-term benefits of breast screening. Breast Cancr Management 2012; 1:31-38
- 3. Gotzsche PC. Relation between breast cancer mortality and screening effectiveness: systematic review of the mammography trials. Dan Med Bull. 2011;58(3):A4246.
- 4. Independent UK Panel on Breast Cancer Screening. The benefits and harms of breast cancer screening: an independent review. Lancet 2012; 380(1778):1786
- 5. Duffy S, Vulkan D, Cuckle H, Parmar D, Sheikh S, Smith R, et al. Annual mammographic screening to reduce breast cancer mortality in women from age 40 years: long-term follow-up of the UK Age RCT. Health Technol Assess. 2020;24(55):1-24.

Brea	ast cancer mortality	reduction
Metaanalyses		RR 95% CI
Case-Control Studies		
Broeders et al	Screening Mx Corr. for self selection Invited for screening	0.46 (0.4 - 0.54) 0.52 (0.42-0.65) 0.69 (0.57-0.83)
Incidence-based Morta	ality Studies	
Broeders et al	Screening Mx Invited to screening	0.62 (0.56–0.69) 0.75 (0.69–0.81)
Randomized Clinical Tr	ials	
Gotsche and Jorgenson	Screening Mx	0.81 (0.74–0.87)
ECIBC	Screening MX	
	45-49	0.88 (0.76 - 1.02)
e	50-69	0.77 (0.66 - 0.90)
	70-75	0.77 (0.54 - 1.09)

- 1. Broeders M, Moss S, Nyström L et al. The impact of mammography screening on breast cancer mortality in Europe: a review of observational studies. J Med Screen 2012; 19(Suppl 1):14-25
- 2. Nyström L, Bjurstam N, Jonsson H, et al. Reduced breast cancer mortality after 20+ years of follow-up in the Swedish randomized controlled mammography trials in Malmö, Stockholm, and Göteborg. Med Screen. 2017 Mar;24(1):34-42
- 3. Morrell S, Taylor R, Roder D, et al. Mammography service screening and breast cancer mortality in New Zealand: a National Cohort Study 1999-2011. Br J Cancer. 2017 Mar 14;116(6):828-839
- 4. Johns LE, Coleman DA, Swerdlow JA, et al. Effect of population breast screening on breast cancer mortality up to 2005 in England and Wales: an individual-level cohort study Br J Cancer 2017;116: 246 -252
- 5. Sankatsing VDV, van Ravesteyn NT, Heijnsdijk EAM, et al. The effect of population-based mammography screening in Dutch municipalities on breast cancer mortality: 20 years of follow-up. Int J Cancer. 2017 Aug 15;141(4):671-677
- 6. Beau AB, Lynge E, Njor SH, et al. Benefit-to-harm ratio of the Danish breast cancer screening programme Int J Cancer. 2017 Aug 1;141(3):512-518.
- 7. https://healthcare-quality.jrc.ec.europa.eu/

AREITSGEMEINSCHAFT GYNAKOLOGISCHAFT ON KOLOGISCHE	Breastcan	cer: inciden	ce and mort	ality
© AGO e. V. in der DGGG e.V. sowie in der DKG e.V.	Annual incidence of 2012)	breast cancer and mo	ortality in the EU (GLC	DBOCAN
Guidelines Breast Version 2023.1E	Age	Incidence / 1000	Mortality / 1000	
	40 to 44	1.2	0.1	
	45 to 49	1.7	0.2	
	50 to 69	2.7	0.5	
	70 to 74	3.0	0.8	
			,	
www.ago-online.de				
LEFIREN HEILEN	From: http://gco.iarc.fr/			

http://gco.iarc.fr/a

ATRAETISGEMEINSCHAT GYNAKOLOGISCHE DINKOLOGISCHE DINKOLOGISCHE	Mammography-Screening Benefit and Harm							
© AGO e. V. in der DGGG e.V. sowie in der DKG e.V.	Data background: Breast Cancer Surveillance Consortium Registry Data per 10.000 Women screened over 10 years							
Guidelines Breast Version 2023.1E	Age	40-49	50-59	60-69	70-74			
	Breast cancer death avoided (CI 95%)	3 (0-9)	8 (2-17)	21 (11-32)	13 (0-32)			
	False-positive (n)	1212	932	808	696			
	Breast biopsies (n)	164	159	165	175			
	False-negative (n)	10	11	12	13			
www.ago-online.de FORSCHEN LEFTREN HEILEN	Siu Al on behalf of the USPSTF 2016, 164:279–296							

Siu AL, on behalf of the U.S. Preventive Services Task Force Screening for Breast Cancer: U.S. Preventive Services Task Force Recommendation Statement. Ann Internal Med 2016 vol 164: 279-296

MAMMA	Early Detection (norma Sonography / MF			
		Oxf	ord	
AGO e. V. in der DGGG e.V. sowie		LoE	GR	AGO
in der DKG e.V. Guidelines Breast	 Screening-Breast sonography allone 	5	D	
Version 2023.1E	 Automated 3D-sonography 	3 a	С	-
	Breast sonography as an adjunct:			
	 Dense mammogram (heterogeneously dense, extremely dense) 	2 a	В	++
	 Elevated risk 	1b	С	++
	 Mammographic lesion 	2b	В	++
	 Second-look US (MRI-only detected lesions) 	2b	С	++
w.ago-online.de	 MRI if screening MG is negative and breast composition: extremely dense* 45–75 LJ 	1b	В	+

- 1. Cochrane Database Syst Rev. 2013 Apr 30;4:CD009632. doi: 10.1002/14651858.CD009632.pub2.
- 2. Nothacker M, Duda V, Hahn M, et al. Early detection of breast cancer: benefits and risks of supplemental breast ultrasound in asymptomatic women with mammographically dense tissue: A systematic review. BMC Cancer 2009; 9: 335-344
- 3. Schaefer KW, Waldmann A, Katalinic A, et al. Influence of additional ultrasound on cancer detection in a cohort study for quality assurance in breast diagnosis- analysis of 102,577 diagnostic procedures. Eur Radiol 2010; 20:1085-1092
- 4. Sprague BL, Stout N, Schechter C, et al. Benefits, harms and cost-effectiveness of supplemental ultrasonography screening for women with dense breasts. Ann Intern Med 2015;162(3):157-166
- 5. Buchberger W, Geiger-Gritsch S, Knapp R et al.: Combined screening with mammography and ultrasound in a population-based screening program. Eur J Radiol. 2018 Apr;101:24-29. doi: 10.1016/j.ejrad.2018.01.022. Epub 2018 Jan 31
- Evans A, Trimboli RM, Athanasiou A, et al.: Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging. European Society of Breast Imaging (EUSOBI), with language review by Europa Donna– The European Breast Cancer Coalition. Insights Imaging. 2018 Aug;9(4):449-461. doi: 10.1007/s13244-018-0636-z. Epub 2018 Aug 9.
- 7. Hee Jung Shin, Hak Hee Kim, Joo Hee Cha. Current status of automated breast ultrasonography: Review. Ultrasonography 2015;34:165-172
- 8. Skaane P, Gullien R, Eben EB, et al. Interpretation of automated breast ultrasound (ABUS) with and without knowledge of mammography: a reader performance study. Acta Radiol 2014 Mar 28. pii: 0284185114528835. [Epub ahead of print]

- 9. Shin HJ, Kim HH, Cha HJ. Current status of automated breast ultrasonography: Review. Ultrasonography 2015;34:165-172
- 10. Brem RF, Tabár L, Duffy SW, et al. Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the SomoInsight Study. Radiology. 2015 Mar;274(3):663-73.
- 11. Hellgren R, Dickman P, Leifland K, et al. Comparison of handheld ultrasound and automated breast ultrasound in women recalled after mammography screening Acta Radiol. 2016
- 12. Wilczek B, Wilczek HE, Rasouliyan L, et al. Adding 3D automated breast ultrasound to mammography screening in women with heterogeneously and extremely dense breasts: Report from a hospital-based, high-volume, single-center breast cancer screening program. Eur J Radiol. 2016 Sep;85(9):1554-63
- 13. Giger ML, Inciardi MF, Edwards A, et al. Automated Breast Ultrasound in Breast Cancer Screening of Women With Dense Breasts: Reader Study of Mammography-Negative and Mammography-Positive Cancers. AJR Am J Roentgenol. 2016 Jun;206(6):1341-50.
- 14. Kim SH, Kim HH, Moon WK. Automated Breast Ultrasound Screening for Dense Breasts. Korean J Radiol. 2020;21(1):15-24.
- 15. Gartlehner G, Thaler KJ, Chapman A, et al. Mammography in combination with breast ultrasonography versus mammography for breast cancer screening in women at average risk. Cochrane Database Syst Rev. 2013 Apr 30;4:CD009632.
- 16. Health Quality Ontario.Ultrasound as an Adjunct to Mammography for Breast Cancer Screening: A Health Technology Assessment. Ont Health Technol Assess Ser. 2016 Jul 1;16(15):1-71.
- 17. Ohuchi, N, Suzuki, A, Sobue, T et al. Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): a randomised controlled trial. Lancet. 2015; 387: 341–348
- Evans A, Trimboli RM, Athanasiou A, et al.: Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging. European of Breast Imaging (EUSOBI), with language review by Europa Donna–The European Breast Cancer Coalition. Insights Imaging. 2018 Aug;9(4):449-461. doi: 10.1007/s13244-018-0636-z. Epub 2018 Aug 9.
- 19. Tagliafico AS, Mariscotti G, Valdora F, et al.: A prospective comparative trial of adjunct screening with tomosynthesis or ultrasound in women with mammography-negative dense breasts (ASTOUND-2). Eur J Cancer. 2018 Nov;104:39-46. doi: 10.1016/j.ejca.2018.08.029. Epub 2018 Oct 11.
- 20. Evans A, Trimboli RM, Athanasiou A, et al.: Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging.European of Breast Imaging (EUSOBI), with language review by Europa Donna–The European Breast Cancer Coalition. Insights Imaging. 2018 Aug;9(4):449-461. doi: 10.1007/s13244-018-0636-z. Epub 2018 Aug 9.
- 21. Rebolj M, Assi V, Brentnall A, et al. Addition of ultrasound to mammography in the case of dense breast tissue: systematic review and meta analysis. Br J Cancer. 2018 Jun;118(12):1559-1570. doi: 10.1038/s41416-018-0080-3. Epub 2018 May 8.

- 22. Vourtsis A, Berg WA. Breast density implications and supplemental screening. European Radiology. 2019;29(4):1762-77.
- 23. Berg WA, Rafferty EA, Friedewald SM, et al. Screening Algorithms in Dense Breasts: AJR Expert Panel Narrative Review. AJR American journal of roentgenology. 2020:1-20.
- 24. Berg WA, Zhang Z, Lehrer D, et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA. 2012;307(13):1394–1404.
- 25. Berg WA, Blume JD, Adams AM, et al. Reasons women at elevated risk of breast cancer refuse breast MRI imaging screening: ACRIN 6666. Radiology. 2010;254(1):79–87.
- 26. Evans A, Trimboli RM, Athanasiou A, et al.: Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging.European of Breast Imaging (EUSOBI), with language review by Europa Donna–The European Breast Cancer Coalition. Insights Imaging. 2018 Aug;9(4):449-461. doi: 10.1007/s13244-018-0636-z. Epub 2018 Aug 9.
- A multicenter, hospital-based and non-inferiority study for diagnostic efficacy of automated whole breast ultrasound for breast cancer in China.Xin Y, Zhang X, Yang Y, Chen Y, Wang Y, Zhou X, Qiao Y.Sci Rep. 2021 Jul 6;11(1):13902. doi: 10.1038/s41598-021-93350-1.PMID: 34230562 Free PMC article. Clinical Trial.

Recommendations International

- 1. Lauby-Secretan B, Scoccianti C, Loomis D, et al; International Agency for Research on Cancer Handbook Working Group: Breastcancer screening–viewpoint of the IARC Working Group. N Engl J Med 2015;372:2353-2358
- 2. IACR Handbook 2016: Website for the IARC publications: http://publications.iarc.fr/Book-And-Report-Series/Iarc-Handbooks-Of-Cancer-Prevention/Breast-Cancer-Screening-2016
- Melnikow J, Fenton JJ, Whitlock EP, et al. Supplemental Screening for Breast Cancer in Women With Dense Breasts: A Systematic Review for the U.S. Preventive Service Task Force Rockville (MD): Agency for Healthcare Research and Quality (US); 2016 Jan. Report No.: 14-05201-EF-3.
- 4. Evans A, Trimboli RM, Athanasiou A et al.: Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging.European of Breast Imaging (EUSOBI), with language review by Europa Donna–The European Breast Cancer Coalition. Insights Imaging. 2018 Aug;9(4):449-461. doi: 10.1007/s13244-018-0636-z. Epub 2018 Aug 9.
- 5. Sardanelli F, Fallenberg EM, Clauser P, Trimboli RM, Camps-Herrero J, Helbich TH, et al. Mammography: an update of the EUSOBI recommendations on information for women. Insights into imaging. 2017;8(1):11-8.

 Smith RA, Andrews KS, Brooks D, Fedewa SA, Manassaram-Baptiste D, Saslow D, et al. Cancer screening in the United States, 2019: A review of current American Cancer Society guidelines and current issues in cancer screening. Ca-a Cancer Journal for Clinicians. 2019;69(3):184-210.

MRI-Screening:

- 1. M. F. Bakker, S. V. de Lange, R. M. Pijnappel, et al (2019). "Supplemental MRI Screening for Women with Extremely Dense Breast Tissue." N Engl J Med 381(22): 2091-2102.
- 2. Comstock CE, Gatsonis C, Newstead GM, Snyder BS, Gareen IF, Bergin JT, et al. Comparison of Abbreviated Breast MRI vs Digital Breast Tomosynthesis for Breast Cancer Detection Among Women With Dense Breasts Undergoing Screening. JAMA : the journal of the American Medical Association. 2020;323(8):746-56.
- 3. Mann RM, Kuhl CK, Moy L. Contrast-enhanced MRI for breast cancer screening. J Magn Reson Imaging. 2019.

AREITSGEMEINSCHAFT OYNAKOLOGISCHE ONKOLOGISCHE	Early Detection (normal Clinical Breast Examinatio	•		
© AGO e. V.		Oxf		
in der DGGG e.V. sowie in der DKG e.V.		LoE	GR	AGO
Guidelines Breast	As stand alone procedure			
VCISION 2020.12	 Self-examination 	1a	Α	_*
	 Clinical breast examination (CBE) by health professionals outside checkup for cancer 	1 a	С	_*
	 Clinical breast examination (CBE) by health professionals during checkup for cancer 	1 a	В	++
	 Medical palpation by blind / visually impaired persons 	3b	С	-
	CBE because of mammographic / sonographic lesion	5	D	++
ww.ago-online.de FORSCHEN LEMREN HEILEN	CBE in combination with imaging	1 a	Α	++
	* May increase breast awareness			

- 1. Bancej C, Decker K, Chiarelli A, et al. Contributions of clinical breast examination to mammography screening in the early detection of breast cancer, J Med Screen 2003; 10: 16-21
- 2. Haakinson DJ, Stucky CCH, Dueck AC, et al. A significant number of women present with palpable breast cancer even with a normal mammogram within 1 year. Am J Surg 2010; 200: 712-718
- 3. Kolb T, Lichy J, Newhouse J. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 2002: 225: 165-175
- 4. Kosters J, Gotzsche P. Regular self-examination or clinical examination for early detection of breast cancer, The Cochrane Database of Systematic Reviews 1 2003.
- 5. Oestreicher N, White E, Lehman C, et al., Predictors of sensitivity of clinical breast examination (CBE), Breast Cancer Res and Treat 2002; 76: 73-81
- 6. Oestreicher N, Lehmann C, Seger D, et al. The incremental contribution of clinical breast examination to invasive cancer detection in a mammography screening program, AJR 2005; 184: 428-432
- 7. Thomas D, Gao D, Ray R, et al. Randomized trial of breast-self-examination in Shanghai: Final results, J Nat Cancer Inst 2002; 94 (19): 14445-1457
- 8. Ngan TT, Nguyen NTQ, Van Minh H, et al. Effectiveness of clinical breast examination as a 'stand-alone' screening modality: an overview of systematic reviews. Bmc Cancer. 2020;20(1):1070.

 Lux MP, Emons J, Bani MR, et al: Diagnostic Accuracy of Breast Medical Tactile Examiners (MTEs): A Prospective Pilot Study. Wunderle M, Sell C, Preuss C, Rauh C, Jud SM, Heindl F, Langemann H, Geyer T, Brandl AL, Hack CC, Adler W, Schulz-Wendtland R, Beckmann MW, Fasching PA, Gass P. Breast Care (Basel). 2019 Mar;14(1):41-47. doi: 10.1159/000495883. Epub 2019 Jan 30

	Oxford					
		LoE	GR	AGO		
e. V. DGGG e.V.	 Clinical examination 	3b	В	++		
OKG e.V.	 Mammography 	1b	Α	++		
nes Breast 1 2023.1E	Tomosynthesis***	2 a	В	+		
	 Contrast-enhanced mammography (alone or as adjunct) 	2a	В	+		
	 Sonography 	2b	В	++		
	 Elastography (shear-wave) * 	2b	В	+		
	 Automated 3D-sonography 	3b	В	+/-		
	MRI**	2b	В	+		
	 Minimally invasive biopsy 	1b	Α	++		

Combined DM + DBT + US + MRI

1. Mariscotti G, Houssami N, Durando M, et al. Accuracy of mammography, digital breast tomosynthesis, ultrasound and MR imaging in preoperative assessment of breast cancer. Anticancer Res. 2014 Mar;34(3):1219-25.

US-Axilla +FNA/CNB

- 1. Diepstraten SC, Sever AR, Buckens CFM, et al. Value of preoperative ultrasound guided lymphnode biopsy for preventing completion axillary lymphnode dissection in breast cancer: a systematic review and meta-analysis. Ann Surg Oncol 2014;21:51-59
- 2. Evans A, Rauchhaus P, Whelehan P, et al. Does shear wave ultrasound independently predict axillary lymph node metastasis in women with invasive breast cancer? Breast Cancer Res Treat. 2013 Dec 4. [Epub ahead of print]
- 3. Feng Y, Huang R, He Y, et al. Efficacy of physical examination, ultrasound, and ultrasound combined with fine-needle aspiration for axilla staging of primary breast cancer. Breast Cancer Res Treat. 2015 Feb;149(3):761-5. doi: 10.1007/s10549-015-3280-z. Epub 2015 Feb 10.
- 4. Evans A, Trimboli RM, Athanasiou A et al. Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging. European of Breast Imaging (EUSOBI), with language review by Europa Donna–The European Breast Cancer Coalition. Insights Imaging. 2018 Aug;9(4):449-461. doi: 10.1007/s13244-018-0636-z. Epub 2018 Aug 9.
- 5. Bick U, Trimboli RM, Athanasiou A, et al. Image-guided breast biopsy and localisation: recommendations for information to women

and referring physicians by the European Society of Breast Imaging. Insights into imaging. 11. Germany2020. p. 12.

<u>MRT</u>

- 1. Mann RM, Loo CE, Wobbes T et al The impact of preoperative MRI on the re-excision rate in invasive lobular carcinoma of the breast. Breast Cancer Res Treat 2010; 119: 415-422
- 2. Houssami N, Turner R, Morrow M. Preoperative magnetic resonance imaging in breast cancer: meta-analysis of surgical outcomes. Ann Surg. 2013 Feb;257(2):249-55.
- 3. Debald M, Abramian A, Nemes L, et al. Who may benefit from preoperative MRI? A single-center analysis of 1102 consecutive patients with primary breast cancer. Breast Cancer Res Treat 2015;153(3):531-537
- 4. Arnaut A, Catley C, Booth CM, et al. Use of preoperative Magnetic Resonance Imaging for breast cancer: A Canadian populationbased study. JAMA Oncol 2015;1(9):1238-1250
- 5. Fancellu A, Turner RM, Dixon JM, et al. Metaanalysis of the effect of preoperative MRI on the surgical management of ductal carcinoma in situ. Brit J Surg2015;192(8)883-893
- 6. Houssami N, Turner R, Macaskill P, et al. An individual person data meta-analysis of preoperative magnetic resonance imaging and breast cancer recurrence. J Clin Oncol 2014;32(5):392-401
- 7. Vos EL, Voogd AC, Verhoef C, et al. Benefits of preoperative MRI in breast cancer surgery studied in a large population-based cancer registry. Br J Surg 2015:102(13)1649-1657
- 8. Lehman CD, Lee JM, DeMartini WS, et al. Screening MRI in women with a personal history of breast cancer. J Natl Cancer Inst 2016;108(3)
- 9. Wang SY, Long JB, Killelea BK, et al. Preoperative breast MRI and contralateral breast cancer occurrence among older women with breast cancer. J Clin Oncol 2015;Nov 30, epub ahead of print
- 10. Riedl CC, Luft N, Clemens B, et al. Triple-modality screening trial for familial breast cancer underlines the importance of magnetic resonance imaging and questions the role of mammography and ultrasonography regardless of patient mutation status, age and breast density. JCO 2015;33(10):1128-1135
- 11.El Sharouni M, Postma EL, Menezes GLG et al. High prevalence of MRI-detected contralateral and ipsilateral malignant findings in patients with invasive ductolobular breast cancer: Impact on surgical management. Clin Breast Cancer. 2016 Aug;16(4):269-75.
- 12.Vriens BE, de Vries B, Lobbes MB, et al. Ultrasound is at least as good as magnetic resonance imaging in predicting tumour size postneoadjuvant chemotherapy in breast cancer. Eur J Cancer. 2016 Jan;52:67-76.
- 13. Health Quality Ontario. Magnetic Resonance Imaging as an Adjunct to Mammography for Breast Cancer Screening in Women at Less

Than High Risk for Breast Cancer: A Health Technology Assessment. Ont Health Technol Assess Ser. 2016; Nov 1;16(20):1-30

- 14. Lobbes MB, Vriens IJ, van Bommel AC, et al. Breast MRI increases the number of mastectomies for ductal cancers, but decreases them for lobular cancers. Breast Cancer Res Treat. 2017;162:353-364.
- 15.Houssami N, Turner RM, Morrow M. Meta-analysis of pre-operative magnetic resonance imaging (MRI) and surgical treatment for breast cancer. Breast Cancer Res Treat. 2017 Sep;165(2):273-283
- 16.Achim Wöckel, Jasmin Festl, Tanja Stüber, et al: Interdisciplinary Screening, Diagnosis, Therapy and Follow-up of Breast Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/045OL, December 2017) – Part 1 with Recommendations for the Screening, Diagnosis and Therapy of Breast Cancer. Geburtshilfe Frauenheilkd. 2018 Oct; 78(10): 927–948.

Reviews CESM:

- 1. Dromain, C., N. Vietti-Violi, and J.Y. Meuwly, Angiomammography: A review of current evidences. Diagn Interv Imaging, 2019.
- 2. Patel, B.K., M.B.I. Lobbes, and J. Lewin, Contrast Enhanced Spectral Mammography: A Review. Semin Ultrasound CT MR, 2018. 39(1): p. 70-79.
- 3. Tagliafico, A.S., et al., Diagnostic performance of contrast-enhanced spectral mammography: Systematic review and meta-analysis. Breast, 2016. 28: p. 13-9.
- 4. Zhu, X., et al., Diagnostic Value of Contrast-Enhanced Spectral Mammography for Screening Breast Cancer: Systematic Review and Meta-analysis. Clin Breast Cancer, 2018. 18(5): p. e985-e995.
- 5. Cozzi, A., V. Magni, M. Zanardo, S. Schiaffino and F. Sardanelli (2022). "Contrast-enhanced Mammography: A Systematic Review and Meta-Analysis of Diagnostic Performance." <u>Radiology</u> **302**(3): 568-581.
- 6. Potsch, N., G. Vatteroni, P. Clauser, T. H. Helbich and P. A. T. Baltzer (2022). "Contrast-enhanced Mammography versus Contrastenhanced Breast MRI: A Systematic Review and Meta-Analysis." <u>Radiology</u> **305**(1): 94-103.

CESM Originalarbeiten:

- 1. Luczynska, E., et al., Comparison of the Mammography, Contrast-Enhanced Spectral Mammography and Ultrasonography in a Group of 116 patients. Anticancer Res, 2016. 36(8): p. 4359-66.
- 2. Fallenberg, E.M., et al., Contrast-enhanced spectral mammography: Does mammography provide additional clinical benefits or can some radiation exposure be avoided? Breast Cancer Res Treat, 2014. 146(2): p. 371-81.
- 3. Tennant, S.L., et al., Contrast-enhanced spectral mammography improves diagnostic accuracy in the symptomatic setting. Clin Radiol,

2016. 71(11): p. 1148-55.

- 4. Fallenberg, E.M., et al., Contrast-enhanced spectral mammography vs. mammography and MRI clinical performance in a multireader evaluation. Eur Radiol, 2017. 27(7): p. 2752-2764.
- 5. Jochelson, M.S., et al., Comparison of screening CEDM and MRI for women at increased risk for breast cancer: A pilot study. Eur J Radiol, 2017. 97: p. 37-43.
- 6. Kim, E.Y., et al., Diagnostic Value of Contrast-Enhanced Digital Mammography versus Contrast-Enhanced Magnetic Resonance Imaging for the Preoperative Evaluation of Breast Cancer. Journal of breast cancer, 2018. 21(4): p. 453-462.
- 7. Patel, B.K., et al., Value Added of Preoperative Contrast-Enhanced Digital Mammography in Patients With Invasive Lobular Carcinoma of the Breast. Clin Breast Cancer, 2018. 18(6): p. e1339-e1345.
- 8. Xing D, Lv Y, Sun B, et al. Diagnostic Value of Contrast-Enhanced Spectral Mammography in Comparison to Magnetic Resonance Imaging in Breast Lesions. Journal of computer assisted tomography. 2019;43(2):245-51.
- Min Jung Ko, Dong A Park, Sung Hyun Kimet, al. Accuracy of Digital Breast Tomosynthesis for Detecting Breast Cancer in the Diagnostic Setting: A Systematic Review and Meta-Analysis. J Radiol. 2021 Aug;22(8):1240-1252. doi: 10.3348/kjr.2020.1227.Epub 2021 May 20.
- 10. Canelo-Aybar C, Carrera L, Beltrán J, et al. Digital breast tomosynthesis compared to diagnostic mammographic projections (including magnification) among women recalled at screening mammography: a systematic review for the European Commission Initiative on Breast Cancer (ECIBC). P.Cancer Med. 2021 Apr;10(7):2191-2204. doi: 10.1002/cam4.3803. Epub 2021 Mar 5.PMID: 33675147
- 11. Cozzi A, Magni V, Zanardo M., et al. Contrast-enhanced Mammography: A Systematic Review and Meta-Analysis of Diagnostic Performance. Radiology. 2021 Dec 14:211412. doi: 10.1148/radiol.211412. Online ahead of print.PMID: 34904875
- Hadadi I, Rae W, Clarke J, McEntee M, et al. Diagnostic Performance of Adjunctive Imaging Modalities Compared to Mammography Alone in Women with Non-Dense and Dense Breasts: A Systematic Review and Meta-Analysis. Clin. Breast Cancer. 2021 Aug;21(4):278-291. doi: 10.1016/j.clbc.2021.03.006. Epub 2021 Mar 16.PMID: 33846098 Review.
- 13. Tang S, Xiang C, Yang Q.Br J. The diagnostic performance of CESM and CE-MRI in evaluating the pathological response to neoadjuvant therapy in breast cancer: a systematic review and meta-analysis. Radiol. 2020 Aug;93(1112):20200301. doi: 10.1259/bjr.20200301. Epub 2020 Jul 2.PMID: 32574075

SMAMMA	of Breast and Axilla	Oxfo	rd	
Y		LoE	GR	AGO
GO e. V. der DGGG e.V.	Clinical examination	5	D	++
wie der DKG e.V.	 Mammography (completion of the imaging) 	2b	В	++
uidelines Breast	 + Tomosynthesis (DBT)*** 	2b	В	+
ersion 2023.1E	 Contrast-enhanced mammography (alone) adjusted with regards of radiation sensitivity of patient and availability 	2a	В	+
	 Sonography (breast/axilla[#]) 	2b/2a#	В	++
	MRI*	1b	Α	+
	 Minimally invasive biopsy** 	1b	Α	++
	 CNB axilla, if lymph node (LN) is suspect, LN-marking if TAD is planned/≤3 susp. LN 	2b	В	++
	 Breast-CT 	4	D	-
	 Axillary PET (PET-CT, PET-MR) 	2b	В	-

Combined DM + DBT + US + MRI

- 1. Mariscotti G, Houssami N, Durando M, et al. Accuracy of mammography, digital breast tomosynthesis, ultrasound and MR imaging in preoperative assessment of breast cancer. Anticancer Res. 2014 Mar;34(3):1219-25.
- 2. Campanino PP, Ruggieri C, Regini E, et al. Accuracy of mammography, digital breast tomosynthesis, ultrasound and MR imaging in preoperative assessment of breast cancer. Anticancer Res. 2014 Mar;34(3):1219-25.

US-Axilla +FNA/CNB

- 1. Diepstraten SC, Sever AR, Buckens CFM, et al. Value of preoperative ultrasound guided lymphnode biopsy for preventing completion axillary lymphnode dissection in breast cancer: a systematic review and meta-analysis. Ann Surg Oncol 2014;21:51-59
- 2. Evans A, Rauchhaus P, Whelehan P, et al. Does shear wave ultrasound independently predict axillary lymph node metastasis in women with invasive breast cancer? Breast Cancer Res Treat. 2013 Dec 4. [Epub ahead of print]
- Feng Y, Huang R, He Y, et al. Efficacy of physical examination, ultrasound, and ultrasound combined with fine-needle aspiration for axilla staging of primary breast cancer. Breast Cancer Res Treat. 2015 Feb;149(3):761-5. doi: 10.1007/s10549-015-3280-z. Epub 2015 Feb 10.
- 4. Evans A, Trimboli RM, Athanasiou A et al. Breast ultrasound: recommendations for information to women and referring

physicians by the European Society of Breast Imaging. European of Breast Imaging (EUSOBI), with language review by Europa Donna–The European Breast Cancer Coalition. Insights Imaging. 2018 Aug;9(4):449-461. doi: 10.1007/s13244-018-0636-z. Epub 2018 Aug 9.

<u>Biopsie</u>

- 1. Chan KY, WiseberdFirtell, J, Jois HSR, et al. Localisation techniques for guided surgical excision of non-palpable breast lesions. Cochrane Database of Systematic reviews 2015;vol 12
- 2. Lourenco AP, Mainiero MB Incorporating imaging into the locoregional management of breast cancer. Semin Radiat Oncol 2016;26(1)
- 3. Mariscotti G, Houssami N, Durando M, et al. Accuracy of mammography, digital breast tomosynthesis, ultrasound and MR imaging in preoperative assessment of breast cancer. Anticancer Res. 2014 Mar;34(3):1219-25.

<u>MRT</u>

- 1. Mann RM, Loo CE, Wobbes T et al The impact of preoperative MRI on the re-excision rate in invasive lobular carcinoma of the breast. Breast Cancer Res Treat 2010; 119: 415-422
- 2. Houssami N, Turner R, Morrow M. Preoperative magnetic resonance imaging in breast cancer: meta-analysis of surgical outcomes. Ann Surg. 2013 Feb;257(2):249-55.
- 3. Debald M, Abramian A, Nemes L, et al. Who may benefit from preoperative MRI? A single-center analysis of 1102 consecutive patients with primary breast cancer. Breast Cancer Res Treat 2015;153(3):531-537
- 4. Arnaut A, Catley C, Booth CM, et al. Use of preoperative Magnetic Resonance Imaging for breast cancer: A Canadian population-based study. JAMA Oncol 2015;1(9):1238-1250
- 5. Fancellu A, Turner RM, Dixon JM, et al. Metaanalysis of the effect of preoperative MRI on the surgical management of ductal carcinoma in situ. Brit J Surg2015;192(8)883-893
- 6. Houssami N, Turner R, Macaskill P, et al. An individual person data meta-analysis of preoperative magnetic resonance imaging and breast cancer recurrence. J Clin Oncol 2014;32(5):392-401
- 7. Vos EL, Voogd AC, Verhoef C, et al. Benefits of preoperative MRI in breast cancer surgery studied in a large populationbased cancer registry. Br J Surg 2015:102(13)1649-1657
- 8. Lehman CD, Lee JM, DeMartini WS, et al. Screening MRI in women with a personal history of breast cancer. J Natl Cancer Inst 2016;108(3)

- 9. Wang SY, Long JB, Killelea BK, et al. Preoperative breast MRI and contralateral breast cancer occurrence among older women with breast cancer. J Clin Oncol 2015;Nov 30, epub ahead of print
- 10. Riedl CC, Luft N, Clemens B, et al. Triple-modality screening trial for familial breast cancer underlines the importance of magnetic resonance imaging and questions the role of mammography and ultrasonography regardless of patient mutation status, age and breast density. JCO 2015;33(10):1128-1135
- 11.El Sharouni M, Postma EL, Menezes GLG et al. High prevalence of MRI-detected contralateral and ipsilateral malignant findings in patients with invasive ductolobular breast cancer: Impact on surgical management. Clin Breast Cancer. 2016 Aug;16(4):269-75.
- 12.Vriens BE, de Vries B, Lobbes MB, et al. Ultrasound is at least as good as magnetic resonance imaging in predicting tumour size post-neoadjuvant chemotherapy in breast cancer. Eur J Cancer. 2016 Jan;52:67-76.
- 13.Health Quality Ontario. Magnetic Resonance Imaging as an Adjunct to Mammography for Breast Cancer Screening in Women at Less Than High Risk for Breast Cancer: A Health Technology Assessment. Ont Health Technol Assess Ser. 2016; Nov 1;16(20):1-30
- 14. Lobbes MB, Vriens IJ, van Bommel AC, et al. Breast MRI increases the number of mastectomies for ductal cancers, but decreases them for lobular cancers. Breast Cancer Res Treat. 2017;162:353-364.
- 15.Houssami N, Turner RM, Morrow M. Meta-analysis of pre-operative magnetic resonance imaging (MRI) and surgical treatment for breast cancer. Breast Cancer Res Treat. 2017 Sep;165(2):273-283
- 16.Achim Wöckel, Jasmin Festl, Tanja Stüber, et al: Interdisciplinary Screening, Diagnosis, Therapy and Follow-up of Breast Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/045OL, December 2017) – Part 1 with Recommendations for the Screening, Diagnosis and Therapy of Breast Cancer. Geburtshilfe Frauenheilkd. 2018 Oct; 78(10): 927–948.
- 17.Panico CA-O, Ferrara F, Woitek R, D'Angelo AA-O, Di Paola VA-OX, Bufi E, et al. Staging Breast Cancer with MRI, the T. A Key Role in the Neoadjuvant Setting. LID 10.3390/cancers14235786 [doi] LID 5786. (2072-6694 (Print)).

Reviews CESM:

- 1. Dromain, C., N. Vietti-Violi, and J.Y. Meuwly, Angiomammography: A review of current evidences. Diagn Interv Imaging, 2019.
- 2. Patel, B.K., M.B.I. Lobbes, and J. Lewin, Contrast Enhanced Spectral Mammography: A Review. Semin Ultrasound CT

MR, 2018. 39(1): p. 70-79.

- 3. Tagliafico, A.S., et al., Diagnostic performance of contrast-enhanced spectral mammography: Systematic review and meta-analysis. Breast, 2016. 28: p. 13-9.
- 4. Zhu, X., et al., Diagnostic Value of Contrast-Enhanced Spectral Mammography for Screening Breast Cancer: Systematic Review and Meta-analysis. Clin Breast Cancer, 2018. 18(5): p. e985-e995.
- 5. Sogani J, Mango VL, Keating D, et al. Contrast-enhanced mammography: past, present, and future. Clin Imaging. 2021;69:269-79.
- 6. Lobbes MBI, Heuts EM, Moossdorff M, van Nijnatten TJA. Contrast enhanced mammography (CEM) versus magnetic resonance imaging (MRI) for staging of breast cancer: The pro CEM perspective. (1872-7727 (Electronic)).

CESM Originalarbeiten:

- 1. Luczynska, E., et al., Comparison of the Mammography, Contrast-Enhanced Spectral Mammography and Ultrasonography in a Group of 116 patients. Anticancer Res, 2016. 36(8): p. 4359-66.
- 2. Fallenberg, E.M., et al., Contrast-enhanced spectral mammography: Does mammography provide additional clinical benefits or can some radiation exposure be avoided? Breast Cancer Res Treat, 2014. 146(2): p. 371-81.
- 3. Tennant, S.L., et al., Contrast-enhanced spectral mammography improves diagnostic accuracy in the symptomatic setting. Clin Radiol, 2016. 71(11): p. 1148-55.
- 4. Fallenberg, E.M., et al., Contrast-enhanced spectral mammography vs. mammography and MRI clinical performance in a multi-reader evaluation. Eur Radiol, 2017. 27(7): p. 2752-2764.
- 5. Jochelson, M.S., et al., Comparison of screening CEDM and MRI for women at increased risk for breast cancer: A pilot study. Eur J Radiol, 2017. 97: p. 37-43.
- 6. Kim, E.Y., et al., Diagnostic Value of Contrast-Enhanced Digital Mammography versus Contrast-Enhanced Magnetic Resonance Imaging for the Preoperative Evaluation of Breast Cancer. Journal of breast cancer, 2018. 21(4): p. 453-462.
- 7. Patel, B.K., et al., Value Added of Preoperative Contrast-Enhanced Digital Mammography in Patients With Invasive Lobular Carcinoma of the Breast. Clin Breast Cancer, 2018. 18(6): p. e1339-e1345.
- 8. Gluskin J, Rossi Saccarelli C, Avendano D, et al. Contrast-Enhanced Mammography for Screening Women after Breast Conserving Surgery. Cancers (Basel). 2020;12(12).

- 9. Sogani J, Mango VL, Keating D, et al. Contrast-enhanced mammography: past, present, and future. Clin Imaging. 2021;69:269-79.
- 10. González-Huebra I, Malmierca P, Elizalde A, et al. The accuracy of titanium contrast-enhanced mammography: a retrospective multicentric study. Acta Radiol. 2020;61(10):1335-42.
- 11. Åhsberg K, Gardfjell A, Nimeus E, et al. Added value of contrast-enhanced mammography (CEM) in staging of malignant breast lesions-a feasibility study. World journal of surgical oncology. 2020;18(1):100.
- 12. Sumkin JH, Berg WA, Carter GJ, et al. Diagnostic Performance of MRI, Molecular Breast Imaging, and Contrastenhanced Mammography in Women with Newly Diagnosed Breast Cancer. Radiology. 2019;293(3):531-40.
- 13. Sung JS, Lebron L, Keating D, et al. Performance of Dual-Energy Contrast-enhanced Digital Mammography for Screening Women at Increased Risk of Breast Cancer. Radiology. 2019;293(1):81-8.
- 14. Schünemann HJ, Lerda D, Quinn C, et al. Breast Cancer Screening and Diagnosis: A Synopsis of the European Breast Guidelines. Annals of Internal Medicine. 2020;172(1):46-56.
- 15. Le Boulc'h M, Gilhodes J, Steinmeyer Z et al. Pretherapeutic Imaging for Axillary Staging in Breast Cancer: A Systematic Review and Meta-Analysis of Ultrasound, MRI and FDG PET. Clin Med. 2021 Apr 6;10(7):1543. doi: 10.3390/jcm10071543.PMID: 33917590 Free PMC article. Review.

Breast-CT:

- 1. Uhlig, J. A.-O., A. Uhlig, L. Biggemann, U. Fischer, J. Lotz and S. Wienbeck "Diagnostic accuracy of cone-beam breast computed tomography: a systematic review and diagnostic meta-analysis." (1432-1084 (Electronic)).
- 2. Zhu, Y., A. M. O'Connell, Y. Ma, A. Liu, H. Li, Y. Zhang, X. Zhang and Z. Ye (2022). Dedicated breast CT: state of the art-Part II. Clinical application and future outlook. <u>Eur Radio</u>l. Germany. **32:** 2286-2300.

			Ma	mmo	ograp	ohy)	
. V.	Author	N	MG	CESM	MRI	US	Analyse
/. iGe.V.	Dromain 2011	110	78	92			Per patient
e.V.	Fallenberg 2014	118	77.9	94.7			Per patient
Breast	Mokhtar 2014	60	93.2	97.7			Per patient
23.1E	Lobbes 2014*	113	96.9	100			Per patient
	Perez 2015 ECR	98		78		66	Per lesion
	Luczinska 2014	152	91	100			
	Jochelson 2012	52	81 59	96 83	96 93		Per patient Per lesion
	Fallenberg 2013	80	81	100	97		Per patient
	Fallenberg 2016	155	81 55	94 72	95 76		Index Per Lesion
	Lalji 2016*	199	93	96,9			Per patient 10 reader
nline.de	Tennant 2016	100	84	95			
HEN	Luczynska 2016	116	90	100		92	
	Xing 2019	235		91,5	91,5		Per lesion

CESM Originalarbeiten:

- 1. Luczynska, E., et al., Comparison of the Mammography, Contrast-Enhanced Spectral Mammography and Ultrasonography in a Group of 116 patients. Anticancer Res, 2016. 36(8): p. 4359-66.
- 2. Fallenberg, E.M., et al., Contrast-enhanced spectral mammography: Does mammography provide additional clinical benefits or can some radiation exposure be avoided? Breast Cancer Res Treat, 2014. 146(2): p. 371-81.
- 3. Tennant, S.L., et al., Contrast-enhanced spectral mammography improves diagnostic accuracy in the symptomatic setting. Clin Radiol, 2016. 71(11): p. 1148-55.
- 4. Fallenberg, E.M., et al., Contrast-enhanced spectral mammography vs. mammography and MRI clinical performance in a multi-reader evaluation. Eur Radiol, 2017. 27(7): p. 2752-2764.
- 5. Jochelson, M.S., et al., Comparison of screening CEDM and MRI for women at increased risk for breast cancer: A pilot study. Eur J Radiol, 2017. 97: p. 37-43.
- 6. Xing D, Lv Y, Sun B, et al. Diagnostic Value of Contrast-Enhanced Spectral Mammography in Comparison to Magnetic Resonance Imaging in Breast Lesions. Journal of computer assisted tomography. 2019;43(2):245-51.

	Oxf	ord	
	LoE	GR	AGO
 History and clinical examination 	5	D	++
Only in case of high metastatic potential and/or symptoms and/o adjuvant chemotherapy and/or antibody-therapy:	or indica	tion for	· (neo-)
 CT scan of thorax / abdomen 	2a	В	+
 Bone scan 	2b	В	+
 Chest X-ray 	5	С	+/-
Liver ultrasound	5	D	+/-
 Further investigation in case of additonal suspicious lesions (e.g. liver-MRI, CEUS*, biopsy etc.) 	2 a	В	+
FDG-PET or FDG-PET-CT** FDG-PET-MRI**	2b	В	+/-
 Whole body MRI 	4	С	+/-
 Contrast enhanced ultrasound ** especially in patients with high tumor stage (III) if available 			
	Only in case of high metastatic potential and/or symptoms and/o adjuvant chemotherapy and/or antibody-therapy: CT scan of thorax / abdomen Bone scan Chest X-ray Liver ultrasound Further investigation in case of additonal suspicious lesions (e.g. liver-MRI, CEUS*, biopsy etc.) FDG-PET or FDG-PET-CT** FDG-PET-MRI** Whole body MRI Contrast enhanced ultrasound	LOE • History and clinical examination 5 Only in case of high metastatic potential and/or symptoms and/or indica adjuvant chemotherapy and/or antibody-therapy: 2a • CT scan of thorax / abdomen 2a • Bone scan 2b • Chest X-ray 5 • Liver ultrasound 5 • Further investigation in case of additonal suspicious lesions (e.g. liver-MRI, CEUS*, biopsy etc.) 2a • FDG-PET or FDG-PET-CT** FDG-PET-MRI** 2b • Whole body MRI 4	 History and clinical examination 5 D Only in case of high metastatic potential and/or symptoms and/or indication for adjuvant chemotherapy and/or antibody-therapy: CT scan of thorax / abdomen 2a B Bone scan Chest X-ray Chest X-ray Chest X-ray Liver ultrasound Further investigation in case of additonal suspicious lesions (e.g. liver-MRI, CEUS*, biopsy etc.) FDG-PET or FDG-PET-CT** FDG-PET-MRI** Whole body MRI Contrast enhanced ultrasound

Statement: history and physical examination

1. GCP

Statement: high metastatic potential / symptoms

760

- 1. Rutgers, EJ et al: Quality control in the locoregional treatment of breast cancer (2001) EJC 37: 447-453
- 2. Gerber B, Seitz E, Muller H et al: Perioperative screening for metastatic disease is not indicated in patients with primary breast cancer and no clinical signs of tumor spread. Breast Cancer Res Treat 82:29-37; 2003
- 3. Schneider C, Fehr MK, Steiner RA et al: Frequency and distribution pattern of distant metastases in breast cancer patients at the time of primary presentation Arch Gynecol Obstet. 2003 Nov;269(1):9-12.
- 4. Isasi CR, Moadel RM, Blaufox MD. A meta-analysis of FDGPET for the evaluation of breast cancer recurrence and metastases. Breast Cancer Res Treat 2005;90(2):105–12.
- 5. Schmidt GP, Baur-Melnyk A, Haug A, et al.: Comprehensive imaging of tumor recurrence in breast cancer patients using wholebody MRI at 1.5 and 3 T compared to FDG–PET–CT. European Journal of Radiology 2008; 65, 47–58.
- 6. Shie P, Cardarelli R, Brandon D et al: Meta-analysis: comparison of F-18 Fluorodeoxyglucose-positron emission tomography and bone scintigraphy in the detection of bone metastases in patients with breast cancer. Clin Nucl Med. 2008 Feb;33(2):97-101.
- 7. Barrett T, Bowden DJ, Greenberg DC et al.: Radiological staging in breast cancer: which asymptomatic patients to image and how. British Journal of Cancer 2009; 101, 1522 – 1528.
- 8. Rong J, Wang S, Ding Q, et al. Comparison of 18 FDG PET-CT and bone scintigraphy for detection of bone metastases in breast cancer patients. A meta-analysis. Surg Oncol. 2013 Jun;22(2):86-91
- 9. Hong S, Li J, Wang S. 18FDG PET-CT for diagnosis of distant metastases in breast cancer patients. A meta-analysis. Surg Oncol. 2013 Jun;22(2):139-43.
- 10. Gutzeit A, Doert A, Froehlich JM, et al. Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol. 2010 Apr;39(4):333-43.

- 11. Department of Health. Diagnosis, staging and treatment of patients with breast cancer. National Clinical Guideline No. 7. June 2015. ISSN 2009-6259
- 12. Bychkovsky BL, Lin NU: Imaging in the evaluation and follow-up of early and advanced breast cancer: When, why, and how often? 2017; 31, 318–324.
- 13. deSouza NM, Liu Y, Chiti A et al.: Strategies and technical challenges for imaging oligometastatic disease: Recommendations from the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer. 2018 Jan 10. [Epub ahead of print].
- 14. NCCN 2019: NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]). Breast Cancer. NCCN Evidence BlocksTM. Version 3.2019 September 6, 2019. https://www.nccn.org/professionals/physician_gls/pdf/breast_blocks.pdf. Download Jan 19, 2020.
- 15. Mishima M, Toh U, Iwakuma N, et al. Evaluation of contrast Sonazoid-enhanced ultrasonography for the detection of hepatic metastases in breast cancer. Breast Cancer. 2016 Mar;23(2):231-41
- 16. Zhang L, Zhang L, Wang H, et al. Diagnostic performance of contrast-enhanced ultrasound and magnetic resonance imaging for detecting colorectal liver metastases: A systematic review and meta-analysis. Dig Liver Dis. 2019 Sep;51(9):1241-1248.
- 17. Ulaner GA, Castillo R, Goldman DA, et al. ¹⁸F-FDG-PET/CT for systemic staging of newly diagnosed triple-negative breast cancer. Eur J Nucl Med Mol Imaging 2016; 43:1937–1944
- 18. Ulaner GA, Castillo R, Wills J, et al. ¹⁸F-FDG-PET/CT for systemic staging of patients with newly diagnosed ER-positive and HER2positive breast cancer. Eur J Nucl Med Mol Imaging 2017
- 19. Groheux D, Giacchetti S, Espié M, et al. The yield of ¹⁸F-FDG PET/CT in patients with clinical stage IIA, IIB, or IIIA breast cancer: a prospective study. J Nucl Med 2011; 52:1526–1534
- 20. Groheux D, Hindié E, Delord M, et al. Prognostic impact of ¹⁸FDG-PET-CT findings in clinical stage III and IIB breast cancer. J Natl Cancer Inst 2012; 104:1879–1887
- 21. Ulaner GA. PET/CT for Patients With Breast Cancer: Where Is the Clinical Impact? AJR American journal of roentgenology. 2019;213(2):254-65.
- 22. Reddy Akepati NK, Abubakar ZA, Bikkina P.. Role of 18F-Fluorodeoxyglucose Positron-Emission Tomography/Computed Tomography Scan in Primary Staging of Breast Cancer Compared to Conventional Staging.. Indian J Nucl Med.; 2018.
- 23. Krammer J, Schnitzer A, Kaiser CG, et al. (18) F-FDG PET/CT for initial staging in breast cancer patients Is there a relevant impact on treatment planning compared to conventional staging modalities?. Eur Radiol. ; 2015.
- 24. Ng SP, David S, Alamgeer M, Ganju V. Impact of Pretreatment Combined (18)F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Staging on Radiation Therapy Treatment Decisions in Locally Advanced Breast Cancer. Int J Radiat Oncol Biol Phys.; 2015.
- 25. Goorts, B., Vöö, S., van Nijnatten, T.J.A. et al. Hybrid ¹⁸F–FDG PET/MRI might improve locoregional staging of breast cancer patients

prior to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 44, 1796–1805 (2017). https://doi.org/10.1007/s00259-017-3745-x 26. https://healthcare-quality.jrc.ec.europa.eu/european-breast-cancer-guidelines/staging-breast-cancer

27. Roszkowski N, Lam SS, Copson E, Cutress RI, Oeppen R. Expanded criteria for pretreatment staging CT in breast cancer. LID - 10.1093/bjsopen/zraa006 [doi] LID - zraa006. (2474-9842 (Electronic)).